COMPOSITE MATERIALS REVOLUTIONISE
AEROSPACE ENGINEERING - PT.2
Note: to read Part 1 Press Here.
AIRFRAME USAGE:
In order to derive maximum benefit from the use of carbon composites, it is essential to direct the fibers in the direction of the main stress. For example, the wing of an aircraft bends during take-off, landing and flight, meaning that it is subject to stress across its span. To support this, engineers orient up to 60% of the fibers along the wing skins and the span-wise internal stiffeners. In addition, wing skins are subject to parallel stresses known as shear stresses – to combat this, plies are directed at 45°. Components inside the wing, such as spars and ribs that are designed to bear shear stresses, are made of up to 80% of 45° plies. In this way, the direction at which the plies are laid ensures that material volume, and hence weight, is kept to a minimum consistent with adequate strength. In terms of the impact on the work of structural engineers, that caused by the advent of CFRP has been considerable – they can now effectively choose the stiffness characteristics of the material they are using. Taking this a step further, engineers are also collaborating with aerodynamicists to explore ‘aero-elastic tailoring’. Aircraft wings are designed in the knowledge that their shape impacts on their lift and load distribution, but also that lift and load distribution will alter their shape. By employing aero-elastic tailoring, structures engineers can generate wing designs that deflect under increases in loading in such a way as to moderate the internal load increase. CFRP is peculiarly amenable to this type of design because, by orienting fibres in specific directions, the stiffness characteristics of a laminate can be modified to give precisely the response to increased load that is required.
THE DESIGN CHALLENGES:
The foregoing description of carbon composites might lead one to question whether all of this is too good to be true: surely this wonder material must have some Achilles' heel? Indeed, there are several obstacles to achieving the low weight and low cost that the headline figures promise. Engineers are overcoming the difficulties progressively through improved design and novel manufacturing processes, but the current state of development sees engineers of all disciplines searching for the best answers .Structural engineers are faced with worries regarding damage tolerance and de-lamination, but they must also contend with the less forgiving nature of the new materials when compared with metals. Metals have the desirable quality that they exhibit plasticity: under high loads they undergo permanent deformation (i.e. they bend or stretch) before they break. As a result, a metallic structure can absorb everyday small impacts (leading to dents) with very little reduction in its basic strength. Plasticity allows loads in highly stressed regions to be re-distributed to regions of lower stress, ensuring that any stress concentrations inherent in a design do not lead to premature structural failure. Carbon/epoxy composites, by contrast, exhibit little or no plasticity. Consequently, small in-service impacts tend to create local breakdowns of the epoxy matrix, leading to a weakening of the laminate in the area of the impact. In addition, stress concentrations in a composite design can cause sudden structural failure at high load; the process would be incremental with a similar design in metal because the load would be redistributed. Structural engineers combat this lack of damage tolerance by assuming much lower stress values than theoretically necessary when they are designing, and they have had to accept an increase in the complexity of their strength calculations to accommodate the greater sensitivity of CFRP at high loads.
MANUFACTURING CHALLENGES:
Manufacturing engineers are, similarly, wrestling with unfamiliar difficulties. Problems with wrinkling of the fibers in the fabrication process, resulting in a loss of stiffness and strength in the finished component, are addressed only by imposing strict constraints on the geometry of structural features. The spectre of void formation in the resin matrix caused by a lack of consolidation of the plies during the curing process – reminiscent of Swiss cheese – creates further geometric constraints. As a consequence, engineers working with composites have realised that designing with manufacture specifically in mind is equally as important as designing for the strength/weight ratio.These issues are a small selection from a list that includes topicsas diverse as the drilling of holes in the assembly of mixed composite/metallic components to the provision of electrical diverter strips to satisfy lightning strike requirements for the finished airframe. So, the widespread introduction of CFRP must be implemented in an intelligent way.
APPLICATIONS:
Following the Airbus lead with its A380, a number of current large aircraft development programmes are looking to use composites more extensively within the wings and fuselage. The Boeing 787 ‘Dreamliner’, for example, may eventually be made of as much as 50% composite materials. This revolutionary aircraft uses a novel process of ‘winding’ composite layers, like the winding of a cotton reel, in the fabrication of large, joint-less, fuselage sections. Meanwhile the Airbus A400M, the next generationof military airlifter expected to make its first flight later this year, similarly has wings made from carbon fibre composites. This aircraft is designed to withstand the severe loads associated with operations from informal landing strips like deserts and fields, and it benefits from the superior fatigue resistance of carbon composites. The design intent is that A400M aircraft will spend less time in the maintenance hanger and more time flying missions. Beyond these aircraft, the indications are that the next generation of single-aisle airliners, ubiquitous throughout the world fleet in making 1,000-3,000 nautical mile flights with payloads of 100-180 passengers, will employ carbon composites extensively in their airframe structure.
FUTURE USES:
The environmental case for developing our understanding and increasing our exploitation of composites is compelling. The Stern Review, 2006, identified that 1.6% of global greenhouse gas emissions come from aviation but that the demand for air travel will rise with our income. To combat the environmental threat that aviation poses, theAdvisory Council for Aeronautical Research in Europe in 2002 laid out targets to reduce the emission of CO2 (an important greenhouse gas) from an aircraft by 50% by 2020. The reduction of airframe weight through the extensive use of carbon composites is just one of a range of technologies that must be deployed to meet such a challenging target.To meet the challenge that the widespread use of composite materials throws up, the civil aerospace community in the UK has launched the NextGeneration Composite Wing (NGCW) research programme, which seeks to answer some of the questions – see panel above. The environmental obstacle that confronts the aviation industry is, perhaps, the greatest it has faced in its 100 year history, the adoption of CFRP being one facet of the industry’s plan to surmount it. The NGCW programme should see the UK aerospace industry well placed to be in the vanguard of the intelligent application of these very promising materials.
Hi dear
ReplyDeleteNice information you have posted. I also want to add some more about Composite Materials.
Composite materials, often shortened to composites, are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct at the macroscopic or microscopic scale within the finished structure. In recent years Global chemical industry is about $1.5 trillion and global composites industry is over $65 billion industry. Now a day’s Composite Materials becomes very important and generally used at every place.
Thanks
Thanks for your contribution :) ,,
ReplyDelete